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The neoclassical theory of transport in magnetically confined plasmas is 
reviewed. The emphasis is laid on a set of relationships existing among the 
banana transport coefficients. The surface-averaged entropy production in such 
plasmas is evaluated. It is shown that neoclassical effects emerge from the 
entropy production due to paralle] transport processes. The Pfirseh-Schl~ter 
effect can be clearly interpreted as due to spatial fluctuations of parallel fluxes 
on a magnetic surface: the corresponding entropy production is the measure of 
these fluctuations. The banana fluxes can be formulated in a "quasi- 
thermodynamic" form in which the average entropy production is a bilinear 
form in the parallel fluxes and the conjugate generalized stresses. A formulation 
as a quadratic form in the thermodynamic forces is also possible, but leads to 
anomalies, which are discussed in some detail. 

KEY W O R D S :  Nonequilibrium thermodynamics; entropy production; 
plasma transport theory; neoclassical transport. 

1, I N T R O D U C T I O N  

Forty years ago appeared Ilya Prigogine's "Th6se d'agr6gation," entitled 
"Etude Thermodynamique des Phdnom6nes Irr6versibles. ''(~ This work 
constituted the first systematic account of an emerging science. The basic 
role played by entropy production in understanding irreversible processes 
and, in particular, transport phenomena was clearly put forward. 

Prigogine's interests subsequently turned to a host of other problems 
and the subject of linear nonequilibrium thermodynamics was considered 
as a more or less finished field. 
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In this paper, which I dedicate to Ilya Prigogine as a token of 
gratitude and friendly affection, I wish to show that the concept of entropy 
production can still play a nontrivial role in the analysis of phenomena 
that, although expressed in a final form that seems very simple, actually 
cover a great complexity at the microscopic level. 

! choose as an example for this demonstration the theory of transport 
in magnetically confined plasmas, such as those used in the thermonuclear 
fusion program. From the point of view of statistical physics, these systems 
present, as a unique peculiarity, an interplay between the basic transport 
phenomena and the geometrical characteristics of the system. Let us be 
clear about this statement. The point is not in the solution of a standard 
transport equation (say: the diffusion equation) with boundary conditions 
of unusual (say: toroidal) geometry. It concerns the fact that the 
mechanisms of the transport themselves (say: the value of the diffusion 
coefficient) are affected by the global geometry of the magnetic field. 

Although these effects have been known for 20 years, their final for- 
mulation, as a mathematically complete and physically satisfactory theory, 
is rather recent. It is only by exploiting the deeper features that one can 
hope to understand the basic structure of plasma transport theory. Let me 
immediately say that in this paper I shall only address the so-called 
"neoclassical plasma transport theory," which has attained a level of 
completeness making it amenable to a thermodynamic analysis./2'31 The 
field of "anomalous transport," in spite of its great practical importance, is 
still far from having reached a comparable level of completeness, because 
the underlying physics of plasma instabilities and turbulence is still poorly 
understood. 

The paper is organized as follows. In Section 2 I review briefly the 
subject of neoclassical transport theory of toroidally confined plasmas, 
addressing myself to non-plasma physicists. Most proofs are skipped: they 
can be found in the standard literature, or in a monograph on plasma 
transport theory, which I shall publish soon. Moreover, for simplicity, the 
transport theory is exposed in its simplest form, the 13-moment 
approximation. However, all the results quoted here have been extended to 
higher approximations. The final results are given in a form that may not 
be familiar to plasma physicists: it is important for exhibiting some non- 
trivial relationships between the transport coefficients, which do not seem 
to have noticed earlier. The third section discusses the possibility of 
incorporating these ideas into the framework of linear nonequilibrium 
thermodynamics. The concept of entropy production, and more precisely, 
of average entropy production, plays a leading role in this discussion. 
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2. REVIEW OF THE NEOCLASSICAL THEORY OF 
TRANSPORT IN MAGNETICALLY CONFINED PLASMAS 

We consider a plasma consisting of electrons (mass m,,, charge 
e e = -e,  density no, temperature Te) and one ion species (mass mi, charge 
ei = Ze, density ni = Z lne, temperature T~), confined by an axisymmetric 
toroidal magnetic field B. We consider here, for the purpose of illustration, 
only the simplest magnetic field configuration, the so-called "standard 
model" or large-aspect-ratio model, which, in toroidal coordinates (Fig. 1), 
is represented by 121 

B(r,O)=B([~l(r)/q(r)]eo+[l+rl(r)cosO] le;)  (2. t) 

where r/(r)= r/R o (Ro being the major radius of the torus), q(r) is the so- 
called safety factor, and g is a constant reference magnetic field; e,., e 0, and 
e~ are unit vectors along the radial, poloidal, and toroidai directions, 
respectively. It is assumed that r/< l. The magnetic field is everywhere 
tangent to a magnetic surface belonging to a set of concentric circular tori. 
Any quantity depending only on the radial coordinate (hence constant on 
each magnetic surface) is called a sur/i~ce quantiO'. With any arbitrary 
function A(r, O, ~) one can associate a surface quantity a(r), called its 
smface average: 

a ( r ) -  (A(r))  (2.2) 

Fig. 1. Toroidal coordinate system. The dashed line is a typical banana orbit. 
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This averaging operation has the important effect of annihilating the action 
of the operator B- V on any scalar quantity: 

(8(r, O)-Vf(r, O, ~)) =0 (2.3) 

In the standard model, the averaging operation has the following simple 
expression: 

r 2 x  

<A(r'O'~))~-(4~2) ~Jo dOd~[ l+r l ( r ) cosO]A(r ,O~)  (2.4) 

The transport phenomena in such a plasma are characterized by the 
following vector fluxes, which, for convenience, are written in dimensionless 
form (e = e, i): 

h}l}= (ene) -1 (m~]T~,)t/2 j,,,: electric current 

e { t }  _ _  e . h,,, - n ~ ( m J T e )  ~/2 F,,,. electron flux 

h]I 3}= (2/5) 1/2 (m~/n~)- ' (m~/T~) 3/2 q~,: 

electron (ion) heat flux 

(2.5) 

Associated with these are a set of thermodynamic forces, which are, 
essentially, the electric field, the pressure gradient, and the electron (ion) 
temperature gradient. For convenience, their exact form will be given later. 

The main purpose of transport theory is the establishment of relations 
between fluxes and forces. In the case of plasma physics, two regimes have 
been identified in which these relations are linear: the short-mean-free-path 
(SMFP) regime [mean free path very small compared to the hydro- 
dynamic length] and the drift approximation (Larmor radius very small 
compared to the hydrodynamic length). The former case corresponds to 
the "classical" collision-dominated situation, but the latter is much subtler 
and is characteristic of confined plasma physics. It allows, in particular, a 
study of long-mean-free-path (LMFP) regimes (which can indeed be 
realized in present-day high-temperature tokamaks). 

Experiments on confined plasmas have no access to the detailed fluxes. 
Only smface-averaged fluxes of  particles and heat in the radial direction 
("leaks") are measurable. Therefore, the typical transport equations of 
confined plasma physics are relations between average radial fluxes and 
average radial forces: they therefore have a markedly nonlocal character. 

Nevertheless, the average components of the fluxes parallel to the 
magnetic field (thus, lying on the magnetic surfaces) also play an important 
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role in the theory. They obey a set of transport equations decoupled from 
the perpendicular components: 

A 
hll') = agl[~)A + ( - -aBo  1 <Bgf/(') > + aBo ~ <Bg[E~3)>) 

hi] ( 3 ) =  0~gll IjA -~- (-~Bo'(Bg[r(I)> + K"Bo ~ <Bg[l(3)>) (2.6) 

= I < Bg fT '  > 

The average fluxes are defined as follows: 

fz~ (e) = Bo l  <B �9 h=(P)> =- B o '  < Bh~d(m> (2.7) 

Note that the usual parallel thermodynamic forces, which are gradients of 
pressure, temperature, or potential, do not enter these equations: they are 
annihilated by the surface averaging because of (2.3). Only the nonpoten- 
tial part of the electric field, E (z)= - c - ~  a~A, contributes to this equation: 

~,ll~ ,A = _ (mjT, , ) ' /2  %(elm,.) Bo  ~ < BE}(~)> (2.8) 

where % is the collisional relaxation time of species c~. Here B o is an 
average magnetic field: 

Bo = <B25 1/2 (2.9) 

or, c~, and ~c ~ are the familiar "classical" parallel transport coefficients: elec- 
trical conductivity, thermoelectric coefficient and thermal conductivities, 
respectively. In the 13-moment approximation (to which we limit ourselves 
here) the matrix of the parallel transport coefficients is simply the inverse 
of the collision operator matrix c~q (i.e., c ~ are the matrix elements of Pq  

the collision operator for species ~ in the Hermite representation). In 
particular, 

tc i=  (cq3) -1 (2.10) 

The most peculiar quantities entering (2.6) are the generalized stresses: 

(Bg[llJ)> = --(m,]T~,) w2 (ze/m,,n,,)< (B" V) rt e > (2.11) 

where re" is the electron (second-order) dissipative pressure tensor. A 
similar, somewhat more complicated definition relates ~(3~ to the 
divergence of the fourth-order stress tensor. These terms, which express the 
anisotropy of the plasma, play a leading role in the LMFP regime. A 
fundamental question of transport theory will be the search for their 
relation to the thermodynamic forces. 



1096 Balescu 

Turning now to the average radialfluxes, a nontrivial manipulation of 
the moment equations ~2"3) leads to a fundamental decomposition into three 
contributions: 

(h~ ~PI ) = <h~ ~p) )cL + (h~ ~P) >PS + <h~ ~e) >B (2.12) 

The first term is called the classical average radial flux: it is the one that 
can be obtained from a standard (Chapman-Enskog or Grad type) 
transport theory(4): 

(h~ Ill )CL = DCL g;r 0~CL ge(3) 

(h~:r L = __0~C L g~r ~e ~,,~3) (2.13) '~CL 6 r  

'~CL d r  

where the (dimensionless) thermodynamic forces are, respectively, propor- 
tional to the radial pressure gradient and temperature gradients: 

g~{ll = _r,,(m,,/T,,),/2 (men,,)- l V~P 
(2.14) 

g;i 131 = -(5/2)  ~/2 %(TJm~)~/2 T= t V~ T~ 

These quantities are, to leading order, surface quantities; hence, they do 
not require any averaging. 

The classical transport coefficients appearing here [diffusion coefficient 
DCL , thermodiffusion coefficient (--~CL), and thermal conductivities tC~L ] 
are the surface averages of the well-known perpendicular transport 
coefficients. For instance, the ion thermal conductivity perpendicular to 
the magnetic field is given by 

KT/Z = C~3(~/.t . /)  2 (2.15) 

where f2~ is the Larmor frequency for species e: 

(2~ = e~B(r, O)/m~e (2.16) 

The "classical" radial ion thermal conductivity is then defined as 

where 

, = < K 2 > = c ~ 3 ( o , o , ,  ) 2 ~  /s (2.17) 

~--- <B2 /B  2 > ( 2 . 1 8 )  

and 12~o is the Larmor radius evaluated with the average magnetic field B o, 
a surface quantity. 
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The second term in Eq. (2.12) is called the Pfirsch-Schl i i ter  (PS) radial 
average flux. These authors (51 discovered that an inhomogeneity of the 
pressure or temperature on the magnetic surface can influence the transport 
in the perpendicular radial direction. This purely geometrical effect can be 
interpreted in terms of drift motions of the charged particles. It was later 
derived in an elegant way from kinetic theory/2'6t; a further improvement 
demonstrates the universality of the result. This discovery came at as a 
great surprise, because it showed that a purely geometrical cause can have 
a (big!) effect on the transport phenomena. The Pfirsch-Schlfiter fluxes can 
be related to the thermodynamic forces by the same  equations (2.13), in 
which one simply changes the values of all the classical coefficients by a 
"PS amplification factor": 

LCL -+ Lps = [(q/~7)2(N - I)/N] LcL (2.19) 

Thus, for instance, the PS ion thermal conductivity is obtained from (2.17) 
as follows: 

es - ~ it-- I) c33"i (2.20) 

where I introduced the important quantity 

, ~  = q/~lf2~o r~ (2.21) 

Equation (2.19) clearly shows the geometrical origin of the PS effect: 
the latter disappears in a straight (or, a f o r t i o r i ,  in a homogeneous) 
magnetic field, where N =  1. It can be shown that the PS transport 
coefficient dominates the classical one by a factor 2 q ; ~  10, but we do not 
wish to discuss this very well-known fact here. 

Finally, the third term in (2.12) is called the banana average radial flux 
and is directly related to the generalized stresses: 

(2.22) 

The strange name comes from the fact that in a long-mean-free-path 
situation there exists a class of particles that are trapped in the local 
magnetic mirrors intrinsically present in a toroidal configuration. These 
particles may perform many oscillations along an orbit having the shape of 
a banana (see Fig. 1) before suffering a collision. It turns out that the 
trapped particles are primarily responsible for these contributions to the 
fluxes. The banana fluxes were discovered by Galeev and Sagdeev(V); their 
theory was refined by Hazeltine et al. ~8~ and later improved by Hirshman 
and Sigmar. (31 
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In order to evaluate the generalized stresses, one first exploits another 
purely geometrical effect: it is shown that, to leading order in the drift 
approximation, all the vector fluxes must have zero divergence. A nontrivial 
utilization of this condition leads to a relation between parallel average 
fluxes and radial thermodynamic forces: 

@1o') = ~ g~I") + e),], n = l ,  3; ~ = e , i  (2.23) 

The quantities e)~, called (rather improperly) "poloidal fluxes," have the 
important property of being surface quantities: they are not determined by 
the zero-divergence condition (they appear as integration constants in the 
solution of a "magnetic differential equation"). In order to fix their values, 
one identifies the right-hand sides of (2.23) and (2.6), thus obtaining a 
relation between generalized stresses, poloidal fluxes, and thermodynamic 
forces. An additional set of relations is obtained by a direct solution of the 
kinetic equation in the L M F P  regime. This is the truly nontrivial part of 
the calculation, into which I cannot enter here. I simply quote the 
remarkable end result, ~3/ which is a linear relation between generalized 
stresses and poloidal fluxes: 

Bo'(B~tc"t  ) = -~0[#,~ co~ +/~,~3o9~], n = 1, 3 (2.24) 

where p is the important "neoclassical factor" 

-L 3 fO:' g ' L= Bg (2.25) 

(p is sometimes loosely called the ratio of trapped to untrapped particles, 
The coefficients/~,,, are called "pseudo-viscosity coefficients" and are deter- 
mined only by the coUision term: their numerical values are easily 
calculated. It should be noted that they form a symmetric matrix: 
t~,,, =- #,],,,. Equations (2.24) provide the last missing link in the theory. 
They are now combined with (2.6) and (2.22) and lead to a final set of 
linear banana transport equations, which, for convenience, are written in 
the following form: 

B = 24~ eq0 [lpl((P) g~(tl + l;;l((p) g~131 + lp~(Cp) aAg~ c3) ] 

+ p =  1, 3 
(2.26a) 

g 2  --1 ie e ( l )  l~;((p) g;(3)] (h~C3t)B=J'~,qoa [13~(~o)g~ + 

~-~ 2 i i  i(3) ^ 
+  ',ot33(q )g, 

As the average radial fluxes appear to be coupled to the parallel 
electric field gl/(A/, these equations must be completed by a relation 
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for the flux conjugate to the latter, i.e., the banana contribution to the 
average parallel electric current; it is obtained from the last two terms on 
the right-hand side of the first equation (2.6): 

e i i(3) '~ll~h(l/--~'cP[lE,((P)g;I')+[~3(o)g;(3)+lE3(cP)gr-- ] +cPl~"(C/))gll ('4) (2.26b) 

I used the following abbreviations: 

a = ( T, m , , t  ~/2 ' IQ,,ol z ,, 
\ - ~  ~n ~ / A f2 ,~ ~ ~ 

Usually A is a large number: the banana transport coefficients are 
conveniently evaluated in the limit A >> 1. 

I now discuss these transport equations in some detail. The first 
unusual feature is the coupling of the radial fluxes to all the thermo- 
dynamic forces. In particular, the electronic fluxes are connected to the 
ionic forces (and conversely); moreover, the radial  fluxes are connected to a 
paral lel  electric field. These features are in sharp contrast to the classical 
and PS structure of Eq. (2.13). 

A deeper study of the banana transport coefficients (which does not 
seem to have been previously done) reveals some striking structural 
features. It turns out that these coefficients can be divided into three 
categories. The first one includes the "pure di f fusive coef f ic ients"  l'[~, l ~ ,  l~<l, 
l~,  l~"3. They form a matrix of the same structure as the classical one (2.13), 
and which has the same fundamental "thermodynamic property" of being a 
symmetric, positive-definite matrix: 

I~'~ = l~ (2.27a) 

l~ > 0 (l~) 2 > 0 (2.27b) 

These coefficients are combinations of the classical parallel transport 
coefficients [i.e., the coefficients a, c~, ~ of Eq. (2.6)] and the pseudo- 
viscosity coefficients of Eq. (2.24). We do not list them here, but give a 
typical example: 

"J7 (~OK [ ] 2 , , ] 2 3 3 - - ( ] 2 1 3  ) ] }  

with 

De(~P) = 1 + ~o(a#~ - 2a#~ 3 + ~'~]2~3) 

_~_ (])2(O.K~e ~2)[]2]~1 ]233e - -  (/~13)" e ",2-11 

822/48/5-6-10 
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The second class of transport coefficients includes the "mixed diffusive 
coefficients" coupling the electrons to the ions. It turns out that these are 
not independent of the former: 

Ip~3(q)) = m,((p)l~'~(~o), p = 1, 3 (2.28) 

with 

m,(qo) = #~13 { # ~  + (pKSE#~it #~3 -- (/f13) 2 ] } - - I  

The third class comprises the "electrical coefficients": these also 
depend on the basic diffusive coefficients: 

lL'E(e) = --~'G'(~0) + ~/;E(~0) 
(2.29) 

The global banana transport matrix has the following symmetry 
properties: 

lp~(qo) = p , q  1,3 l r~(~) = 

t ;E(~)  = - G ( e ) ,  p = 1, 3 
(2.30) 

This is in agreement with Onsager's principle (the antisymmetry of the 
electrical cross-coefficients is due to their being odd functions of the 
magnetic field). A surprise comes, however, from the property 

/EE(q~) < 0 (2.3 1 ) 

There are good physical reasons for this behavior: the trapped particles 
cannot participate in a parallel current, hence the parallel electrical conduc- 
tivity is diminished in their presence; moreover, the "total" electrical 
conductivity ~; + ~-2 e ,,~0lEE(~0) [see Eq. (2.6)] remains positive for all values 
ofq~. 

3. ENTROPY PRODUCTION A N D  T R A N S P O R T  PROCESSES IN 
M A G  N ETICALLY CON FIN ED P L A S M A S  

At the end of the review of the neoclassical transport theory one is left 
with a vague feeling of uneasiness. The average radial fluxes involve three 
contributions (2.12), two of which obey transport equations of the usual 
type of the "phenomenological equations" of irreversible thermodynamics, 
but the third does not. It may be argued that the banana fluxes are charac- 
teristic of the long-mean-free-path regime, to which thermodynamics does 
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not apply. But this argument, as such, is weak, because the constituents of 
the banana transport coefficients, namely the parallel transport coefficients 
and the pseudoviscosities, are both determined by the collision operator of 
the kinetic equation and should therefore reflect its properties. It is 
therefore important, for understanding the status of this theory, to 
investigate whether (or how) it enters the framework of thermodynamics. 

The natural starting point for this study is the concept of entropy 
production. Kinetic theory provides us with a quite general expression of 
this quantity. When the latter is evaluated with a distribution function 
expressed as a superposition of Hermitian moments and is then truncated 
by retaining only leading terms (quadratic in the fluxes) and is moreover 
limited to the "13-moment" approximtion, the following form is found for 
the density of entropy production a~ (made dimensionless by the factor 
~/n~): 

Z " ~  (%/n,,) r = c';r h (1)" h/l)+ c~3h "(3)" h"(3) + 2C~'3 hI1)" h e(3) 

X i =  (ri/17i) (7 i =  c~3 hi(3) �9 h i(3) (3.1) 

where c~q are the matrix elements of the collision operator. I stress the fact 
that this "kinetic form" of the entropy production appears as a quantity 
intrinsically characteristic of the collision operator: it is simply the 
quadratic form associated with the symmetric collision matrix. In par- 
ticular, no assumption about the size of the mean free path has been made 
here. 

Making use of the moment equations, one can transform (3.1) into 

Z i =  hi(3) . gi(3) + hi(3), g/(31 (3.2) 

For brevity, I henceforth only write out the shorter formulas for the 
ions, it being understood that similar expressions hold for the electronic 
entropy production. If the generalized stresses f~i(3) were zero (as in a short- 
mean-free-path regime), (3.3) would reduce to the usual thermodynamic 
bilinear form of fluxes h and forces g. Here, however, we have a "quasi- 
thermodynamic form." 

I now make use of the transport equations relating the fluxes to the 
forces and eliminate some terms that are negligible in the drift 
approximation2; then (3.2) reduces to 

xi~__ Ki(gfl3) _~ gf}3,)2 _]_ x~_(g~(3,)2 

- i i ( 3 . 3 )  = Ell + ZCL 

2 These are the "perp-tangentiaI" components of the vectors (perpendicular to the magnetic 
field and to the radial direction) as well as the contribution of the radial generalized stresses. 
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i The second term, denoted ZCL, has the "ordinary" thermodynamic 
form of a definite positive quadratic form in the forces, whose coefficients 
are the perpendicular (unaveraged!) transport coefficients of Eq. (2.15). On 
the contrary, the parallel part (which involves the parallel heat conduc- 
tivity, a surface quantity), contains a contribution of the generalized 
stresses and is therefore not in the standard form. Clearly, the neoclassical 
effects are hidden in the parallel entropy production. 

According to the general philosophy of confined plasma physics, it 
should be clear that only surface-averaged quantities are expected to be 
physically relevant. This statement should apply to the entropy production 
as well. We therefore define a surface-averaged entropy production: 

<Z'> = <~i>II-b <Zi>CL (3.4) 

The classical contribution poses no problem. Indeed, in Eq. (3.3), gfC3~ 
is a surface quantity; hence the average only involves the perpendicular 
heat conductivity: 

(3.5) 

and we know from (2.17) that (~:~)__ ~CcL . i  Thus, the classical average 
entropy production has the canonical "transport form" (3.3), i.e., a 
quadratic form in the forces, whose coefficients are the averaged classical 
radial transport coefficients. This property also implies the factorization 
inherent to the thermodynamic form (3.2): 

(~Y'i)C L = ( h f ( 3 ) ) c  L gi! 3) (3.6) 

i.e., a bilinear form in the average fluxes and forces, in agreement with 
standard nonequilibrium thermodynamics. 

For the parallel average entropy production, the situation is not so 
clear. Indeed, using the simpler kinetic form (3.1), we have 

~ ~i> LI = ci33< hi13)hl} 3) > (3.7) 

and this is not a quadratic form. 
In order to clarify the situation, we note that a (nontrivial) 

manipulation of the moment equations and of the zero-divergence 
constraint leads to a remarkable expression of the (unaveraged!) parallel 
fluxes: 

/ 
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[-Recalling that the dependence on the poloidal angle is contained solely in 
B(r,O), Eq.(2.1), it is easily checked that this equation, upon multi- 
plication by (B/Bo) and surface averaging, reduces to (2.6)]. But through 
Eq. (2.22), this equation is transformed into a relation between parallel 
fluxes and average radial banana fluxes: 

hi13) = Boo "~iig~3)+-"~OKi~:t(h~(3))B 
hs(3~ j_ hit3/ (3.9) 

--~ , ,  i r p s  - -  ,,pl B 

Such a relation between parallel and radial fluxes and forces is 
ultimately due to the geometrical constraint of zero divergence, mentioned 
in Section 2. (The reason for the choice of indices in the abbreviated 
notation will presently become clear.) 

The main interest of (3.9) is that the poloidal angle dependence 
[through B(O, r)] is explicitly exhibited. Therefore, after substitution into 
(3.7), the surface average can be calculated exactly. We note the following 
obvious identities [recalling (2.9)]: 

B 2 

qo(t i)) :0 
Hence, the average entropy production splits into two terms: 

(s ' )H = ( s ' )p~  + (z")~  (3.1o) 

( S i ) p s = ~ 2 ( ( f f _ _  1)C~3(g~(3)) 2 (3.11) 

( S i ) B  ~ -  - 2~.i/./~i(3) N 2 (3.12) 

The first remarkable fact in this relation is the following: the average 
of a product is represented as a sum of two products of forces or fluxes. It is 
this factorization theorem that enables us to provide a thermodynamic 
interpretation of the neoclassical results. 

Next, we note that the coefficient in (3.11) is simply the Pfirsch- 
Schli~ter radial transport coefficents ~Cpsi defined in (2.20). Thus, we have 
isolated a Pfirsch Schliiter and a banana contribution to the average 
entropy production. The former has exactly the canonical form (3.5) of a 
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quadratic form in the forces, associated with the positive-definite PS 
transport matrix. In other words, the PS average entropy production has 
the standard thermodynamic form: 

( v ' i ) p  S = (h~(3))p s g~(3) (3.13) 

It can be shown that this relation is quite general: in particular, it is 
independent of the truncation at the 13-moment level of the transport 
theory. 

Although we found such a nice structure, we are still puzzled by the 
following question. If the PS fluxes enter so naturally into the thermo- 
dynamic framework, why should there be a PS effect in addition to the 
classical fluxes after all? The entropy production provides us with a quite 
original answer to this question. 

Combining Eqs. (2.6) and (2.21), we find the following relation 
between the (total) average parallel heat flux and the average radial banana 
flux: 

/~iI 3/= i f 7  ' # ( h l  I/3') B (3.14) 

Combining now Eqs. (3.7), (3.10)-(3.12), and (3.14), we find 

( Z i ) I I -  ( 2 " ) B  = e~3<hila)hfl 3)) - (h : i )  ' /~i13)hll 3)=  < .~ ' )  ps 

or, using (2.10), 

(/7i13)hi(3) X /~i(3)hi(31_ K i ( x i ) p s  (,(~ff -- 1 ) ~2(gf.13))2 (3.15) 
"'[I "'H / - - " I t  " ' I f  - -  = 

Thus, the PS effect originates from the spatial fluctuations of the 
parallel fluxes on a magnetic swface. The PS average entropy produclion is 
precisely a measure of these fluctuations. Their explicit value is proportional 
to the square of the radial forces, multiplied by the geometrical factor 
(~ - 1 )  ~,~. 

We now turn to the banana average entropy production. Equation 
(3.12) is queer, for the following reason: it expresses the average entropy 
production as a standard quadratic form associated with the parallel trans- 
port matrix, but the variables involved are not thermodynamic forces as 
would be expected [see (3.5)], but rather the average radial banana fluxes. 
On second thought, however, the situation is not unreasonable: indeed, 
because of (2.22), Eq. (3.12) can be rewritten as 

(X')B = Ki(Bo ' (B~II3) 5) 2 (3.16) 

This is the standard transport form, in which the thermodynamic 
forces are replaced by the generalized stresses. It is clear from (3.2), (3.3) 
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that the generalized stresses play a role quite analogous to the true 
thermodynamic forces. 

The average banana entropy production therefore assumes the 
"quasithermodynamic form": 

<~Y'i)B _-- ]~i13)(Bo- 1< B~fl3')) (3.17) 

which implies that the "thermodynamic force" conjugate to the average 
parallel heat flux is the corresponding average generalized stress, as follows 
from (2.6). 

This seems to be the only reasonable extension of nonequilibrium ther- 
modynamic concepts to the banana transport phenomena: it conserves the 
formal structure of the entropy production as a bilinear form in the forces 
and the fluxes. When written as a quadratic form, it introduces the parallel 
transport coefficients as the basic transport matrix. 

Of course, banana transport theory shows that the generalized stresses 
can, in turn, be connected to the ordinary thermodynamic forces. It is a 
trivial matter to substitute the transport equation (2.26a) into (3.12). The 
result is an expression of the average entropy production as a quadratic 
form in the true thermodynamic forces (we now write expressions for both 
species): 

4 
(S~)B= ~ LpqXpXq, ~=e,i (3.18) 

p , q =  l 

where we adopt a more compact notation: 

XI ~_ g[(1), ~ 2  =- g513), X3 = g5 II31, 2 4  = glV llA 

Clearly, both the electron and the ion banana average entropy produc- 
tion will be expressed in the same form, because the same forces appear in 
all the transport equations (2.27): this is a difference with the traditional 
forms of the entropy production, in which ionic and electronic forces are 
clearly separated. 

The coefficients Lpq appearing in (3.18) are not the banana transport 
coefficients lpq~: they are rather complicated combinations of parallel trans- 
port coefficients and of banana coefficients. For instance, 

K" F 2 2 e ~ - 1  - - 2 O . ] >  0 L'~4=q02[a(l]'E) 2+ (3E) -- ~lleI3E--2(P lEe+q) 

I quote this example in order to stress the following fact: the coefficients 
entering the quadratic forms (3.18) form a symmetric positive matrix. This 
was not the case for the banana transport matrix: recall (2.31). There is, 
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however, a difference between (3.18) and the ordinary entropy production: 
(3.18) is a semidefinite (rather than definite) positive form (i.e, it can 
vanish for nonzero values of its arguments Xp). This is reflected by the fact 
that some of the second-order determinants constructed from the Lpq are 
zero. [This property is trivial for the ion case, but not for the electron case: 
in the latter, the structural relations (2.28)-(2.29) play an important role in 
the proof of this property.] This fact expresses the lack of independence of 
the variables Xp in these forms. In the ion case this is obvious: the average 
entropy production basically contains a single square term (3.12), which 
has been "artificially" expanded by writing the banana flux as a com- 
bination of four terms. As a result of this discussion, it is clear that the 
average banana entropy production cannot be written in the standard 
thermodynamic form: 

(3.19) 

We have found that there appears to be a "divorce" between the 
ordinary banana transport coefficients entering the transport equations 
(2.26) and the "entropic" transport coefficients defining the entropy 
production (3.18). The correspondence between transport theory and ther- 
modynamics is maintained at the level of a description in terms of parallel 
fluxes and generalized stresses, (3.17). One could therefore argue that the 
difficulty encountered here is due to the banana fluxes being actually 
"disguised parallel fluxes." (More precisely, the banana radial fluxes are 
induced by parallel fluxes and forces through the geometrical zero- 
divergence constraint.) But this argument cannot explain everything. 
Indeed, the PS radial fluxes are also "disguised parallel fluxes"; 
nevertheless, they are well integrated in the framework of thermodynamics. 

The answer to the difficulty is probably that the banana fluxes are 
typical of a long-mean-free-path regime. The distribution functions are 
markedly different from the short-mean-free-path, strongly collisional 
regime, which naturally leads to the classical form of the entropy produc- 
tion. I have thus returned to my initial statement, but made it much more 
precise. If this is so, it is remarkable that banana transport theory can be 
formulated in terms that, though not identical, are as close as possible to 
nonequilibrium thermodynamics. 
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